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Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillato
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~Received 11 October 2001; published 3 April 2002!

We study phase synchronization~PS! of coupled chaotic oscillators as a result of an interplay between local
coupling and global noise. In the weak coupling region, noise first significantly enhances spatiotemporal PS,
but it spoils the phase coherence of chaotic oscillation and reduces the degree of synchronization at large
intensities. The spatiotemporal behavior exhibits coherence resonance. Noise enhanced phase synchronization
is of great relevance to ecology.
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Nontrivial effects of noise in nonlinear systems, such
stochastic resonance~SR! @1#, and coherence resonance~CR!
@2# have been of significant recent interest. By CR, p
noise without an external signal can induce maximal coh
ent motion, observed mainly in excitable systems. The fr
tier of interest has shifted to spatiotemporal systems rece
such as spatiotemporal SR@3# and array-enhanced SR@4#.
Pure spatially independent noise can induce traveling wa
@5# or global oscillations@6# in excitable media. Noise
induced coherence can be significantly enhanced when
noisy excitable elements are coupled@7#, known as array-
enhanced CR@8#.

Most previous investigations considered the effect of s
tially independent noise on homogeneous excitable me
However, natural systems can hardly be fully homogeneo
moreover, chaotic oscillation and spatial correlation of no
are of great relevance in many situations. In ecology, po
lation oscillations can be well described by Ro¨ssler type cha-
otic food-web models@9#. The chaotic population oscillator
over large geographical regions are generically nonident
due to demographic heterogeneity; however, they are o
affected by similar environmental fluctuations@10#. They are
also weakly coupled due to the migration among populati
@9#. It is thus important to study how coupling and noi
together affect the collective behavior of extended hetero
neous chaotic systems. Observations have shown sync
nous fluctuation of populations over large geographical
gions @10#. Basically, there are two explanations for th
synchronization behavior. The first one, known as the Mo
effect @11#, suggests that two separated populations may
come correlated when exposed to similar environmental fl
tuations. However, the Moran effect is only well understo
in linear and simple systems, but not in nonlinear ones@12#;
in particular, it was pointed out that for chaotic models t
Moran effect alone cannot synchronize populations@13#. The
second explanation is based on phase synchronization~PS!
@14–17# of nonidentical chaotic oscillators in a weak co
pling regime @9#. However, weak coupling by migratio
alone may not be sufficient for population synchronization
real situations, and moreover the effects of common envir
mental fluctuations have not been taken into account.

We study PS in spatially extended heterogeneous cha
oscillators as a combined result of common~global! noise
and weak~local! coupling. The model is a lattice ofN3N
(N5100) Rössler chaotic oscillators with periodic boun
aries and a global noise:
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ẋi j 52v i j yi j 2zi j 1g(
kl

~xkl2xi j !1Dj1 , ~1!

ẏi j 5v i j xi j 10.15yi j 1Dj2 , ~2!

żi j 50.41zi j ~xi j 28.5!, ~3!

where each oscillator is connected to its four nearest ne
bors, the parametersv i j are randomly and uniformly distrib
uted in @0.96,0.98#, g is the coupling strength, andD is the
intensity of independent Gaussian noisesjk (k51,2) with
^jk(t)j l(t2t)&5dk,ld(t). The main properties of the sys
tem reported in the following are similar for coupling e
tended to more neighbors as well as for correlatedj1 andj2.
Noise is not applied to thez variable, because it would easil
make the system unstable. The lattice has random initial c
ditions on the chaotic attractors before coupling and no
are applied. The phasef i j of each oscillator is defined a
f i j 5arctan(yij /xij) @15#.

In this extended system of chaotic oscillators subjected
noise, we characterize both temporal and spatial PS. In
fect synchronization of two noiseless periodic oscillators,
phases are locked to a constant difference, while in no
chaotic oscillators, the phase differenceDf(t) fluctuates
around a certain preferred value and undergoes many no
induced 2p phase slips. To distinguish the preferred pha
difference from noise-induced phase slips, we consider
cyclic phase difference@Df(t) mod 2p# so that Df and
Df12p represent the same direction in the phase space
the distribution of the cyclic phase difference construc
with a histogram ofM bins @18#, preferred phase difference
are manifested by peaks. The sharpness of the distribu
characterizes the degree of phase synchronization, an
quantified by the entropyS52(k

Mp(k)ln p(k) @17#. In the
lattice, we randomly choose an oscillator as a reference
cillator and compute the entropyS( i j ) of the i j th oscillator
with respective to the reference one. By averaging over sp
and normalizing with the entropy of the uniform distributio
Sm5 ln(M), we get the temporal PS index

r t5~Sm2^S&!/Sm . ~4!

r t shows no sensitive dependence on the reference oscill
The degree of PS is higher for largerr t . The degree of
©2002 The American Physical Society01-1
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spatial PS can be manifested by the fluctuation amplitud
the mean fieldX5^xi j &s @16#. We calculate the variancesX

2

5Š(X2^X& t)
2
‹t of X.

Before considering the effects of noise, we briefly d
scribe the behavior of the system with increasing coupl
strengthg. Without noise, the lattice achieves a global fr
quency locking when the coupling strengthg.0.04, which,
however, does not immediately lead to large scale spa
synchronization. The lattice does not display a visible m
roscopic mean field (X;0) until g.0.165, and for g
,0.165, it exhibits typically chaotic spiral waves@19# with
increasing length scales for largerg.

We are especially interested in the effects of noise in
weak coupling region where the coupling alone is not su
cient to achieve a high degree of PS. Typical behavior of
lattice in this region is shown in Fig. 1. Without noise, th
pattern is rather random, only displaying phase clusters w
small length scales. Accordingly, the phasesf i j are almost
uniformly distributed and the lattice does not have a mac
scopic mean field (X;0). With a global noise of intensity
D50.4, the pattern becomes rather uniform and the pha
are sharply distributed most of time. In the phase sp
(x,y), the states of the oscillators form a cloud of poin
around a direction corresponding to the peak value, wh
rotates during the evolution of the system. As a result of t
collective behavior over large spatial scales, a coherent m
roscopic mean field emerges. However, when the nois
much stronger, most of the time the pattern becomes fa
random again and the phases are not sharply distributed.
mean fieldX still has large amplitudes but its temporal b
havior is rather noisy, because strong noise has spoiled
phase coherence of the chaotic oscillations.

Now we examine the temporal PS behavior. Figure 2
lustrates the phase properties of two randomly chosen o
lators in the lattices. Without noise, the phases are gene
not synchronized, as seen by increasing phase differe

FIG. 1. Behavior of a weakly coupled lattice (g50.01) with a
global noise of various intensities. The upper panel: a snapsho
the spatial patterns ofxi j in gray scales~the scale range is the sam
for the three patterns, with white representing maximal and bl
minimal values! The middle panel: the corresponding distributio
of phasesf i j on @2p,p# The lower panel: the corresponding me
field X vs time.
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and a broad distribution of the cyclic phase differences; ho
ever, the weak coupling has already been manifested by
presence of small peaks in the distribution. When addin
global noise with intensityD50.4, fairly long phase syn-
chronization epochs~hundreds of oscillations! are observed,
and the distribution has a sharp peak. In the presence
larger noise (D51.5), the phases become strongly incoh
ent and the phase differences perform random-walk fluc
tions. Nevertheless, there are a lot of phase synchroniza
epochs. The distribution also has a peak, but it is not
pronounced as that forD50.4. The picture is similar for
other pairs of oscillators in the lattices.

Now we have seen clearly that global noise plays a s
nificant role in spatiotemporal PS of weakly coupled chao
oscillators. When the noise is weak, phase coherence o
oscillation is only spoiled slightly; however, PS can be e
hanced drastically and the whole lattice achieves a la
scale collective motion. Although larger noise introduc
stronger long-range interactions into the lattice, the dynam
becomes rather noisy and phase coherence is serio
spoiled, which reduces the degree of PS. As a result of
competition between reduced phase coherence and enha
long-range interaction, there should exist an optimal amo
of noise which induces the most coherent spatiotemp
motion in the system.

To characterize the coherence of the spatiotemporal
tion, we employ the time series of the mean fieldX. Its am-
plitude and temporal coherence reflect the spatial and t
poral coherence in the lattice, respectively. A combinat
measure of the spatiotemporal coherence based onX can be
defined as@2#

b5H
vp

Dv
, ~5!

wherevp is the frequency of the main peak in the spectru
of X, H is the peak height mainly depending on the amp
tude of X, andDv is the half-width of the peak, reflecting
temporal randomness ofX. In Fig. 3, b is shown as a func-
tion of the noise intensityD for various coupling strengths in

of

k

FIG. 2. Temporal phase synchronization behavior between
randomly chosen oscillators in weakly coupled lattices (g50.01).
The upper panel displays time series of lifted phase differen
~defined on the whole real axis!. The lower panel shows the corre
sponding distributions of the cyclic phase differences modula
into @2p,p#.
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the weak coupling region, along with the variancesX
2 of the

mean fieldX and the temporal phase synchronization ind
r t .

We find that when the oscillators are not coupledg
50), the global noise alone leads to a slight enhancemen
PS; however, the degrees of both spatial and temporal PS
rather low. Fairly strong noise can induce a visible mac
scopic mean field, but the coherenceb has only small values
This is consistent with previous investigations that the M
ran effect alone is not sufficient to synchronize chaotic e
logical models@13#, while if a weak coupling is introduced
which alone is not strong enough to induce sufficient spa
and temporal PS, the interplay between the global noise
local coupling is able to achieve a high degree of spatiote
poral PS. A combination of rather weak coupling and nois
sufficient to generate large scale and coherent collective
tion in the lattice. With the increases of the noise intens
the coherenceb of the spatiotemporal behavior increase
reaches a maximum, and decreases at large noise inte
displaying the typical features of CR@2,7,8#. It is important
to emphasize that the mechanism of spatiotemporal CR
result of competition between noise-enhanced PS and no
induced phase incoherence in the present system is diffe
from that in excitable systems where noise-induced exc
tion plays the major role@2,7,8#. Noise-enhanced PS here
also due to a different mechanism from that in excitable m
dia subjected to spatially uncorrelated noise@20#.

The interplay between global noise and local coupling c
result in another resonantlike behavior as a function of c
pling strengthg ~Fig. 4!. Without noise, the lattice exhibits
complicated wave structure with larger length scales for
creasingg ~Fig. 5,D50). A weak global noise has the effe
of enhancingphase clusteringin the present system~Fig. 1!,

FIG. 3. Coherence resonance features of the spatiotempora
havior of the lattice.~a! The temporal phase synchronization ind
r t ; ~b! the variancesX

2 of the mean fieldX; and ~c! the coherence
factor b of X.

FIG. 4. Resonantlike feature in the lattice shown bysX
2 vs g.

The coherenceb exhibits similar behavior.
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similar to clustering behavior in globally coupled system
@21#. However, noise-enhanced phase clustering occurs
the largest length scales at a certain intermediate coup
strengthg whose value depends on the noise intensityD
~Fig. 4!. At stronger coupling, the wave structure can par
survive in the presence of noise, which prevents phase c
tering over large length scales; but the sizes of the w
structure~Fig. 5, D50.3) are much larger than those in th
noise-free case. To characterize the two different scenari
phase clustering behavior without or with noise in the we
coupling regime, we define a length scale dependent o
parameter of phase clustering as the fraction of the num
of pairs of oscillators with phase differenceuDfu modp
,0.1p @22# over a spatial window ofN13N1 oscillators.
The mean valueR(N1) obtained by averaging over movin
windows and a large number of snapshots of patterns
shown in Fig. 6.R is called the mean phase clustering rat
Without noise, phase clustering occurs only at small len
scales, which increase withg. The global noise induces
phase clustering over large length scales at intermediag
values ~e.g., g50.015). At largerg ~e.g., g50.03), phase
clustering occurs at length scales much larger than thos
the noise-free case, reflecting the noise-enhanced wave
However,R becomes smaller again at largeN1. This length
scale dependent order parameter is very useful for the an
sis of clustering behavior in systems having both local c
pling and global driving signals.

We have shown that noise can play a very construc
role is enhancing spatiotemporal PS in a lattice of wea
coupled chaotic oscillators when it acts commonly on
oscillators. We have demonstrated a different mechanism
CR, here in chaotic oscillatory media rather than in excita
systems. An optimal amount of noise generates the most

e-
FIG. 5. Snapshots of patterns ofxi j at different coupling

strength g and noise intensityD50 ~upper panel! and D50.3
~lower panel!. Gray scales as in Fig. 1.

FIG. 6. Phase clustering ratioR as a function of spatial window
lengthN1 for D50 ~a! andD50.3 ~b!.
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herent spatiotemporal motion in the system. As a result of
interplay between global noise and local coupling, the s
tem may establish maximal sensitivity to external rand
forcing by adapting the coupling strength to the regime
largest length scales of phase clustering. These nontr
features are of significance especially in ecology: while
Moran effect or migration alone is not sufficient to synchr
n

ev

ys

va

ol.
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nize populations, a cooperative interplay between them
achieve population synchronization over large geograph
scales.

The authors thank B. Blasius for helpful discussion. T
work was supported by the Humboldt Foundation and
RTN 158.
ev.

,

s,

s,

re

e

F.

by

ider
@1# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453
~1981!; L. Gammaitoni, P. Hanggi, P. Jung, and F. Marcheso
Rev. Mod. Phys.70, 223 ~1998!.

@2# Hu Gang, T. Ditzinger, C.Z. Ning, and H. Haken, Phys. R
Lett. 71, 807 ~1993!; A.S. Pikovsky and J. Kurths,ibid. 78,
775 ~1997!.

@3# P. Jung and G. Mayer-Kress, Phys. Rev. Lett.74, 2130~1995!;
F. Marchesoni, L. Gammaitoni, and A.R. Bulsara,ibid. 76,
2609 ~1996!; J.M.G. Vilar and J.M. Rubı´, ibid. 78, 2886
~1997!.

@4# J.F. Lindneret al., Phys. Rev. Lett.75, 3 ~1995!; M. Löcher,
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