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Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators
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We study phase synchronizati¢®S of coupled chaotic oscillators as a result of an interplay between local
coupling and global noise. In the weak coupling region, noise first significantly enhances spatiotemporal PS,
but it spoils the phase coherence of chaotic oscillation and reduces the degree of synchronization at large
intensities. The spatiotemporal behavior exhibits coherence resonance. Noise enhanced phase synchronization
is of great relevance to ecology.
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Nontrivial effects of noise in nonlinear systems, such as .
stochastic resonan¢8R) [1], and coherence resonan(@R) Xij=— i Vij— Zij+9>, (Xa—Xij)+Dé, (1)
[2] have been of significant recent interest. By CR, pure .
noise without an external signal can induce maximal coher-

ent motion, observed mainly in excitable systems. The fron- Yij = wijXij +0.15/;; + D&, 2
tier of interest has shifted to spatiotemporal systems recently,
such as spatiotemporal 9R] and array-enhanced SR]. iij=0-4+ Z;(x;;—8.5) 3)

Pure spatially independent noise can induce traveling waves

[5] or global oscillations[6] in excitable media. NoiSe- | here each oscillator is connected to its four nearest neigh-

induced coherence can be significantly enhanced when the, ¢ the harameters; are randomly and uniformly distrib-
noisy excitable elements are couplgd, known as array- uted in[0.96,0.98, g iJs the coupling strength, ard is the

enhanced CR8]. . . . ) : a .
Most previous investigations considered the effect of spa'—mens'ty of independent Gaussian noisgs(k=1,2) with

tially independent noise on homogeneous excitable medizg.fk(t)g'(t_T».: S, 10(7). The main pr(_)pert|es of th_e Sys-
However, natural systems can hardly be fully homogeneoud€™M reported in the following are similar for coupling ex-
moreover, chaotic oscillation and spatial correlation of noiséended to more neighbors as well as for correldigendé,.

are of great relevance in many situations. In ecology, populNoise is not applied to thevariable, .because it woulq ggsﬂy
lation oscillations can be well described bysRter type cha- Make the system unstable. The lattice has random initial con-
otic food-web model$9]. The chaotic population oscillators ditions on the chaotic attractors before coupling and noise
over large geographical regions are generically nonidenticare applied. The phasg;; of each oscillator is defined as
due to demographic heterogeneity; however, they are ofterb;; = arctang; /x;) [15].

affected by similar environmental fluctuatiofi€]. They are In this extended system of chaotic oscillators subjected to
also weakly coupled due to the migration among populationgoise, we characterize both temporal and spatial PS. In per-
[9]. It is thus important to study how coupling and noise fect synchronization of two noiseless periodic oscillators, the
together affect the collective behavior of extended heterogephases are locked to a constant difference, while in noisy
neous chaotic systems. Observations have shown synchrehaotic oscillators, the phase differendas(t) fluctuates
nous fluctuation of populations over large geographical rearound a certain preferred value and undergoes many noise-
gions [10]. Basically, there are two explanations for this induced 27 phase slips. To distinguish the preferred phase
synchronization behavior. The first one, known as the Morarglifference from noise-induced phase slips, we consider the
effect[11], suggests that two separated populations may besyclic phase differenc¢ A ¢(t) mod 27] so thatA¢ and
come correlated when exposed to similar environmental flucA ¢+ 27 represent the same direction in the phase space. In
tuations. However, the Moran effect is only well understoodthe distribution of the cyclic phase difference constructed
in linear and simple systems, but not in nonlinear oried;  with a histogram oM bins[18], preferred phase differences

in particular, it was pointed out that for chaotic models theare manifested by peaks. The sharpness of the distribution
Moran effect alone cannot synchronize populatigk®. The  characterizes the degree of phase synchronization, and is
second explanation is based on phase synchronizéién  quantified by the entropg=—3=}"p(k)In p(k) [17]. In the
[14-17 of nonidentical chaotic oscillators in a weak cou- lattice, we randomly choose an oscillator as a reference os-
pling regime [9]. However, weak coupling by migration cillator and compute the entro(ij) of theijth oscillator
alone may not be sufficient for population synchronization inwith respective to the reference one. By averaging over space
real situations, and moreover the effects of common environand normalizing with the entropy of the uniform distribution

mental fluctuations have not been taken into account. Sy=In(M), we get the temporal PS index
We study PS in spatially extended heterogeneous chaotic
oscillators as a combined result of commg@iobal) noise p:=(Sn—(S))/Sy- (4)

and weak(local) coupling. The model is a lattice di XN
(N=100) Rwsler chaotic oscillators with periodic bound- p; shows no sensitive dependence on the reference oscillator.
aries and a global noise: The degree of PS is higher for larggf. The degree of
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0 50 100 0 50 100 0 50 100 randomly chosen oscillators in weakly coupled latticgs=0.01).
time time time The upper panel displays time series of lifted phase differences

FIG. 1. Behavior of a weakly coupled latticg0.01) with a  (defined on the whole real ayisThe lower panel shows the corre-
global noise of various intensities. The upper panel: a snapshot chponding distributions of the cyclic phase differences modulated
the spatial patterns of; in gray scalesthe scale range is the same Nt [—m 7]

for the three patterns, with white representing maximal and black R ) )
minimal value$ The middle panel: the corresponding distributions @nd & broad distribution of the cyclic phase differences; how-

of phasesp;; on[ — 7] The lower panel: the corresponding mean €Ver, the weak coupling has already been manifested by the
field X vs time. presence of small peaks in the distribution. When adding a
global noise with intensityp =0.4, fairly long phase syn-
spatial PS can be manifested by the fluctuation amplitude ofhronization epoch¢hundreds of oscillationsare observed,
the mean fieldX=(x;;)s [16]. We calculate the variance  and the distribution has a sharp peak. In the presence of a
=((X—=(X)p)?); of X, larger noise D =1.5), the phases become strongly incoher-
Before considering the effects of noise, we briefly de-ent and the phase differences perform random-walk fluctua-
scribe the behavior of the system with increasing couplingions. Nevertheless, there are a lot of phase synchronization
strengthg. Without noise, the lattice achieves a global fre-epochs. The distribution also has a peak, but it is not as
qguency locking when the coupling strengih-0.04, which, pronounced as that faD=0.4. The picture is similar for
however, does not immediately lead to large scale spatiadther pairs of oscillators in the lattices.
synchronization. The lattice does not display a visible mac- Now we have seen clearly that global noise plays a sig-
roscopic mean field X~0) until g>0.165, and forg nificant role in spatiotemporal PS of weakly coupled chaotic
<0.165, it exhibits typically chaotic spiral wavg$9] with oscillators. When the noise is weak, phase coherence of the
increasing length scales for larggr oscillation is only spoiled slightly; however, PS can be en-
We are especially interested in the effects of noise in thénanced drastically and the whole lattice achieves a large
weak coupling region where the coupling alone is not suffi-scale collective motion. Although larger noise introduces
cient to achieve a high degree of PS. Typical behavior of thetronger long-range interactions into the lattice, the dynamics
lattice in this region is shown in Fig. 1. Without noise, the becomes rather noisy and phase coherence is seriously
pattern is rather random, only displaying phase clusters witlspoiled, which reduces the degree of PS. As a result of the
small length scales. Accordingly, the phasks are aimost  competition between reduced phase coherence and enhanced
uniformly distributed and the lattice does not have a macrolong-range interaction, there should exist an optimal amount
scopic mean field X~0). With a global noise of intensity of noise which induces the most coherent spatiotemporal
D =0.4, the pattern becomes rather uniform and the phasegsotion in the system.
are sharply distributed most of time. In the phase space To characterize the coherence of the spatiotemporal mo-
(x,y), the states of the oscillators form a cloud of pointstion, we employ the time series of the mean fixldits am-
around a direction corresponding to the peak value, whiclplitude and temporal coherence reflect the spatial and tem-
rotates during the evolution of the system. As a result of thigporal coherence in the lattice, respectively. A combination
collective behavior over large spatial scales, a coherent maeneasure of the spatiotemporal coherence based can be
roscopic mean field emerges. However, when the noise idefined ag2]
much stronger, most of the time the pattern becomes fairly
random again and the phases are not sharply distributed. The B=H Wp 5)
mean fieldX still has large amplitudes but its temporal be- Aw’
havior is rather noisy, because strong noise has spoiled the
phase coherence of the chaotic oscillations. wherew), is the frequency of the main peak in the spectrum
Now we examine the temporal PS behavior. Figure 2 il-of X, H is the peak height mainly depending on the ampli-
lustrates the phase properties of two randomly chosen oscitude of X, andAw is the half-width of the peak, reflecting
lators in the lattices. Without noise, the phases are generalligmporal randomness o€ In Fig. 3, 8 is shown as a func-
not synchronized, as seen by increasing phase differencéien of the noise intensit{p for various coupling strengths in
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FIG. 3. Coherence resonance features of the spatiotemporal be:
havior of the lattice(a) The temporal phase synchronization index
pt; (b) the variancarf( of the mean fieldX; and(c) the coherence

factor B of X.

the weak coupling region, along with the varianr,% of the

mean fieldX and the temporal phase synchronization mdexstrengthg whose value depends on the noise intengity

(Fig. 4). At stronger coupling, the wave structure can partly
sfurvive in the presence of noise, which prevents phase clus-
(%ering over large length scales; but the sizes of the wave

Pt

dia subjected to spatially uncorrelated ndigé].

The interplay between global noise and local coupling ca
result in another resonantlike behavior as a function of cou-
pling strengthg (Fig. 4). Without noise, the lattice exhibits a
complicated wave structure with larger length scales for in-
creasingg (Fig. 5,D=0). A weak global noise has the effect

0.8

We find that when the oscillators are not couplegl (
=0), the global noise alone leads to a slight enhancement
PS; however, 'ghe degrees OT both sp_atlal and te_mporal PS aé?ructure(Fig. 5,D=0.3) are much larger than those in the
rather low. Fairly strong noise can induce a visible macro-
scopic mean field, but the coherengdas only small values.

This is consistent with previous investigations that the Mo-
ran effect alone is not sufficient to synchronize chaotic eco-
logical modeld13], while if a weak coupling is introduced,
which alone is not strong enough to induce sufficient spatiaP
and temporal PS, the interplay between the global noise a

local coupling is able to achieve a high degree of spatiotem-
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FIG. 5. Snapshots of patterns of; at different coupling
Strengthg and noise intensityD=0 (upper panel and D=0.3
(lower panel. Gray scales as in Fig. 1.

similar to clustering behavior in globally coupled systems

[21]. However, noise-enhanced phase clustering occurs over
the largest length scales at a certain intermediate coupling

noise-free case. To characterize the two different scenario of
phase clustering behavior without or with noise in the weak
coupling regime, we define a length scale dependent order
parameter of phase clustering as the fraction of the number
f pairs of oscillators with phase differendé ¢| mod
0.17 [22] over a spatial window ofN;XN; oscillators.

he mean valu€&k(N;) obtained by averaging over moving

poral PS. A combination of rather weak coupling and noise isW'ndOWS and a large number of snapshots of pattems is

sufficient to generate large scale and coherent collective m
tion in the lattice. With the increases of the noise intensity,
the coherenceB of the spatiotemporal behavior increases,
reaches a maximum, and decreases at large noise intensif
displaying the typical features of CR,7,8. It is important

to emphasize that the mechanism of spatiotemporal CR as
result of competition between noise-enhanced PS and nois
induced phase incoherence in the present system is differe
from that in excitable systems where noise-induced excita=
tion plays the major rol¢2,7,8. Noise-enhanced PS here is
also due to a different mechanism from that in excitable met

shown in Fig. 6 R is called the mean phase clustering ratio.
Without noise, phase clustering occurs only at small length
scales, which increase with. The global noise induces
hase clustering over large length scales at intermedjate
\)élues(e.g.,g=0.015). At largerg (e.g.,g=0.03), phase
céustering occurs at length scales much larger than those in

e noise-free case, reflecting the noise-enhanced wave size.
Elowever,R becomes smaller again at lartyg. This length
scale dependent order parameter is very useful for the analy-
sis of clustering behavior in systems having both local cou-
pling and global driving signals.

We have shown that noise can play a very constructive

of enhancingphase clusteringn the present systeiffrig. 1),
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FIG. 4. Resonantlike feature in the lattice shown dg vs g.

The coherencg exhibits similar behavior.
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r{ole is enhancing spatiotemporal PS in a lattice of weakly
coupled chaotic oscillators when it acts commonly on all
oscillators. We have demonstrated a different mechanism of
CR, here in chaotic oscillatory media rather than in excitable
systems. An optimal amount of noise generates the most co-
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FIG. 6. Phase clustering rat®as a function of spatial window
lengthN; for D=0 (@) andD=0.3 (b).
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herent spatiotemporal motion in the system. As a result of thaize populations, a cooperative interplay between them can
interplay between global noise and local coupling, the sysachieve population synchronization over large geographical
tem may establish maximal sensitivity to external randomscales.

forcing by adapting the coupling strength to the regime of

largest length scales of phase clustering. These nontrivial The authors thank B. Blasius for helpful discussion. This
features are of significance especially in ecology: while thewvork was supported by the Humboldt Foundation and EU
Moran effect or migration alone is not sufficient to synchro-RTN 158.
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